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Abstract 

An 18-month multidisciplinary project was undertaken by JRPlumer & 
Associates, LLC and four subcontractors that had three technical objec-
tives: (i) to upgrade current handheld technology for chemical analysis by 
X-ray fluorescence spectroscopy (XRFS), Raman spectroscopy (RS), and 
laser-induced breakdown spectroscopy (LIBS); (ii) to design a multisensor 
system based on these technologies for the rapid, in-situ chemical analysis 
of soils and other materials of military interest; and (iii) to investigate the 
classification/discrimination performance benefit that might be achieved 
through advanced signal pre-processing and data fusion with XRFS, RS, 
and LIBS analyses acquired for four suites of natural soils. Accomplish-
ments of the program in the latter area are described in this report.  

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

An 18-month multidisciplinary effort was undertaken by JRPlumer & As-
sociates, LLC with three technical objectives: (i) to upgrade current com-
mercial handheld technology for chemical analysis by X-ray fluorescence 
spectroscopy (XRFS), Raman spectroscopy (RS), and laser-induced break-
down spectroscopy (LIBS); (ii) to design a multianalyzer system based on 
these technologies for the rapid, in-situ chemical analysis of soils and 
other materials of military interest; and (iii) to investigate the classifica-
tion/discrimination performance benefit that might be achieved through 
signal pre-processing and data fusion using XRFS, RS, and LIBS analyses 
of natural soils. This initiative was supported by subcontracts from 
JRPlumer & Associates, LLC to SciAps, Inc., Signal Analysis Solutions, 
LLC, SoilHydrology Associates, LLC, and Applied Spectra, Inc. Accom-
plishments of this multidisciplinary R&D program pertain to three tech-
nical areas: Technology Development and Design, Soil and Military 
Material Analysis; and Signal Processing, Chemometric Analysis, and Data 
Fusion. Details of work completed under the first two program areas are 
commercial proprietary, so this report describes the results only from the 
third program area. 

1.1 Objective(s) 

A central hypothesis of the multisensor concept is that integration of three 
chemical analyzers with largely complementary capabilities would result in 
an operational performance surpassing that achievable by any of the indi-
vidual handheld analyzers. Thus, the overarching program objective was 
to evaluate this hypothesis. 

1.2 Approach 

The program vision was that a multianalyzer capability would permit dis-
crimination of materials of interest presently beyond the capability of con-
temporary field-portable analyzers and at a price point significantly lower 
than laboratory instrumentation. Thus, spectral data preprocessing and 
fusion of the processed data streams from the individual analyzers were 
studied to assess the extent to which classification/discrimination perfor-
mance could be improved. Anticipated performance enhancement would 
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be a consequence of utilizing an integrated approach to data prepro-
cessing, fusion of processed data streams from the three analyzer types to 
be joined in the multi-analyzer system, and state-of-the-art chemometric 
analysis employing advanced statistical analysis, pattern recognition, and 
machine learning techniques for material classification/discrimination. As 
another step in laying the foundation for a multianalyzer system, algo-
rithms were developed for processing the analyzer data streams and un-
dertaking the chemometric analysis in real time. 

A soil analysis component of the program was needed to baseline the per-
formance of the three individual commercial analyzers and to provide the 
data needed for the signal processing and data analytics research. Four 
suites of natural soils were acquired and then analyzed using the commer-
cial XRFS, RS, and LIBS analyzers individually. Various approaches to the 
pre-processing of the LIBS data, which is characterized by high shot-to-
shot spectral intensity variation, were examined. Then, the processed data 
for each sample analyzed was fused with the XRFS and RS data streams for 
that samples, with the results for the fused results for the integrated ana-
lyzer data streams compared with that from the individual analyzers.  
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2 Background 

2.1 Instrumentation 

Until quite recently, chemical analysis for material characterization has 
been possible only in the laboratory. Consequently, laboratory analysis 
of materials collected in the field, typically tends to be limited to a small 
number of samples that are analyzed using specialized instrumentation 
such as inductively coupled plasma mass spectrometry, high performance 
liquid chromatography, or gas chromatography. These processes are labor 
intensive, time-consuming, and typically very costly because individual 
samples must be collected and packaged on-site in the field, transported to 
the laboratory, and then processed for analysis on what can be very expen-
sive instrumentation. However, with the recent advent of portable single 
sensor instrumentation for chemical analysis in the field, a technological 
opportunity existed to create a novel and unique field characterization and 
forensic capability for the rapid, in-situ analysis of both soil and a wide 
range of materials of military interest undisturbed in the field under ambi-
ent environmental conditions. 

Thus, a program of coordinated interdisciplinary research, development, 
testing, and evaluation (RDTE) was developed to design, integrate, and 
construct a compact, and lightweight multianalyzer system for deployment 
by an individual or on a robotic unmanned ground or aerial vehicle. A 3-
part program was structured that would first enhance and refine the cur-
rent handheld commercially available sensors for XRFS, RS, and LIBS, de-
sign an integrated multianalyzer system, develop and test a data fusion 
process, and finally fabricate a multi-analyzer system that would be 
demonstrated and validated through both laboratory and field testing. The 
first three parts of this program were funded under ERDC contract 
W913E518C0011 issued to JRPlumer & Associates LLC on 20 September 
2018 for an 18 months period of performance. 

X-ray fluorescence spectroscopy (XRFS) is a technique for determination 
of bulk chemical composition that uses X-ray-induced fluorescence to com-
positionally interrogate a broad (~mm size) area of a material surface and 
is particularly efficacious for transition metals and other heavy elements. 
Raman spectroscopy (RS) observes the inelastic scattering of monochro-
matic laser light from a material surface to measure the frequency of mo-
lecular vibrational and rotational modes to acquire a structural fingerprint 
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by which different substances can be identified. RS analyzers can be con-
figured to have either a point or broad area interrogation capability. Laser-
induced breakdown spectroscopy (LIBS) utilizes a pulsed laser to ablate a 
very small (10s µm size) area on the surface of a material and determine 
its chemical composition through spectral analysis of emitted light. It is 
particularly sensitive to light elements and is also capable of continuous 
depth profiling into a sample. Thus, it can also be used to ‘clean’ a sub- 
mm-size area on a sample surface prior to analysis so that underlying lay-
ers can be compositionally interrogated once any surface coating, crust, or 
corrosion is removed. 

Figure 1. The SciAps commercial-off-the-shelf handheld analyzers for X-ray 
fluorescence spectroscopy (left), Raman spectroscopy (center), and laser-induced 
breakdown spectroscopy (right), with the performance attributes of each analyzer 

noted. 

 

Each of these three technologies for chemical analysis – XRFS, RS, and 
LIBS, are presently commercially available as handheld analyzers for use 
outside the laboratory (Figure 1) and have common performance attrib-
utes like minimally-destructive analysis and rapid data collection and pro-
cessing. It is well recognized that these different analytical technologies 
have different elemental sensitivities and analytical accuracies. However, 
each modality has its own unique functional competency (Table 1), such as 
differential sensitivity to a wide range of elements, point versus area analy-
sis, surface analysis versus depth profiling and analysis of elemental versus 
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molecular compositions. It has also been observed that by synthesizing 
raw data from several sources and processing the integrated data using the 
tools of multivariate statistical analysis (i.e. data fusion) it is possible to 
generate more meaningful information than can be generated by using 
data from any single source and that such fused information that can be of 
enhanced value. For example, data fusion for different kinds of analytical 
instruments can reduce limits of detection and improve uncertainty, 
whereas the fusion of information from different types of sensors with dif-
ferent physical characteristics can enhance insight about the environment 
being observed. 

Table 1. Comparative capabilities of SciAps handheld XRFS, RS, 
and LIBS analyzers. 

 

 

Table 2. Perceived advantages of an integrated multi-analyzer system. 

•  Rapid on-site detection and discrimination of materials of interest by trained      
field personnel (not highly trained technicians) 
•  Undertake qualitative detection or quantitative analysis 
•  Low cost (some 10x less than laboratory equivalents) 
•  On-board data processing in real time and wireless transmission of data 
•  Small size, weight, power requirements to enable use on remotely-operated 

  •  Deployment for interrogation of inaccessible and denied area 
•  Deployment of multiple units per mission 
 

The integration of the three analyzers into a single multi-analyzer system 
would greatly expand current technological capability for real-time chemi-
cal analysis in the field under ambient environmental conditions (Table 2). 
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There is strong potential for technology transition spinoff for other appli-
cations. For example, one such possibility would be its use for field foren-
sics by both the civil and military law enforcement communities. 

2.2 Soil 

To fully understand and exploit the analytical benefit a field-portable mul-
tianalyzer capability, it is important to understand the chemistry of target 
of interest for this program – natural soil. 

Soil is defined by the United State Department of Agriculture (USDA) Na-
tional Resources Conservation Service (NRCS) as natural unconsolidated 
material on the immediate surface of the Earth comprised of solids (miner-
als and organic matter), liquid, and gases that serves as the growth medium 
of land plants (NRCS 1999). Soils and their internal horizons differ from 
one another and depend on five soil-forming factors – geologic parent ma-
terial, climate, topography, biological factors associated with the flora and 
fauna, and time (Jenny 1994). There is a wide variety of geological units, 
climates, floras and faunas, and topography across the United States, 
while the factor time spans many orders of magnitude from a few to hun-
dreds of thousands of years. For example, in New Mexico the gypsiferous 
sand soil at White Sands National Monument can be as young as a few 
weeks, whilst the ancient gravelly sandy loam soil on Sedillo Hill has an 
age of about 750,000 years.  

Eight chemical elements (O, Si, Al Fe, Mg, Ca, Na, & K) comprise the 
bulk of the inorganic component of soils. Ions of these elements combine 
in various ratios to form different minerals. Another 80+ elements natu-
rally occur in soil in minor and trace quantities and still others can be pre-
sent as anthropogenic contaminants. Soils are chemically different from 
the rocks and minerals from which they form in that soils contain less of 
the water-soluble weathering products, Ca, Mg, Na, and K and more of the 
relatively insoluble elements such as Fe and Al. Old, highly weathered soils 
normally have high concentrations of aluminum and iron oxides. The or-
ganic fraction of the near-surface soil, which is composed predominantly 
of, carbon, hydrogen, oxygen, nitrogen and smaller quantities of sulfur 
and other elements, usually comprises <6% of the soil mass by weight and 
much less at depth. Yet, despite its small quantity it has a great influence 
on soil chemical properties. The organic fraction enhances soil aggregation 
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and structure, enhances soil water retention, and increases cation ex-
change capacities, while also serving as a reservoir for the plant essential 
nutrient elements (e.g. N, P, and S). 

Soils are classified based on physical and chemical properties in their dif-
ferent horizons (e.g. composition, color, texture, structure, etc.) from the 
surface to two meters depth. Currently, the NRCS soil database for the 
United States 
(https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/da
ta/?cid=nrcs142p2_053586) contains more than 20,000 detailed soil se-
ries descriptions that reflect the wide range of the five soil-forming factors 
across the country. The NRCS soil taxonomy establishes hierarchies of 
classes to permit the relationship among soils and between soils, and the 
factors responsible for their character, to be understood. The soil series is 
the lowest category within soil taxonomy. All soils within a single series 
have uniform differentiating characteristics and arrangement of horizons. 
This does not mean that all soils within a series are identical; it does mean 
that they have a similar sequence of horizons, but the horizons may be of 
different thickness, color, structure, within prescribed limits. All the soils 
within a series will have developed in the same kind of parent material 
with comparable drainage characteristics and will be of similar age. The ef-
fects of climate and biological activity will have been very similar. Conse-
quently, the soils within a series exhibit like properties and respond in like 
fashion to usage or manipulation. 

To understand the soil landscape and how it is portrayed on soil maps it is 
important to understand what is being mapped (soil taxonomic units) and 
how their distribution is recorded on a soil map (soil mapping units). All 
soils in the U.S. are classified according to an established soil taxonomy 
that has six categories from highest to lowest: Order, Suborder, Great 
Group, Subgroup, Family, and Series. The classification becomes more ex-
clusive from Soil Orders to Soil Series. There are 12 Soil Orders and over 
25,000 Soil Series, generally the spatial distribution of Soil Series is what 
is portrayed on NRCS soil maps. 

The single most important factor determining the accuracy of any soil map 
is the map scale. Most intensive agricultural areas have soil maps at a scale 
of 1:20,000 or less. All other areas, also known as rangeland areas, have 
soil maps at a scale of 1:50,000 or greater. The smallest unit that can be 
defined on a map at this scale is approximately 20 acres. 

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/data/?cid=nrcs1
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/data/?cid=nrcs1
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/data/?cid=nrcs1
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/data/?cid=nrcs1
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/data/?cid=nrcs1
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It is important to note that the method for mapping soils in rangelands ar-
eas of the western US differs from that in more intensively farmed regions. 
In agricultural areas, soil map unit boundaries are identified primarily by 
the change in soil properties determined from soil auguring and, more re-
cently, remote sensing tools such as electromagnetic induction meters. By 
contrast, rangeland soil maps are based largely on the interpretation of 
aerial photographs to identify proxy data that has been determined reflect 
changes in soil properties, such as changes in landform, parent materials, 
vegetation, etc. The initial identification of soil map units is validated with 
a very small number of soil observations, commonly 4-5/km2. At the 
rangeland scale, many soil map units are described as either complex or 
compound Soil Mapping Units (SMU), compound SMU’s predominantly 
consist of two Soil Series whereas complex SMU’s can contain more than 
two Soil Series. Furthermore, in the description of the map units there is 
no indication how the two or more Soil Series are distributed within the 
unit. 

Unit boundaries on all soil maps are shown as fixed (or definite) bounda-
ries that indicate the immediate change from one Soil Series to the adjoin-
ing Soil Series. However, two very different types of soil map unit 
boundaries can be observed in the field - well-defined boundaries and gra-
dational boundaries. Well-defined boundaries are those where soil proper-
ties abruptly change across a landform or due to a change in lithology. 
Such boundaries are easily identified by landform or lithological relation-
ships and the boundary does not change over time. By contrast, grada-
tional boundaries can change over time and may change according to the 
soil properties being considered. Most of the soil map unit boundaries for 
maps at a scale of 1:50,000 and above are boundaries based on landform 
and/or lithological changes. 

The NRCS has identified and mapped the over 20,000 different Soil Series 
across the United States at different levels of classification from Family, to 
Subgroup, Great Group, Suborder and Order. The NRCS soil taxonomy di-
vides natural soils into 12 Orders that exhibit only small differences in the 
kinds and relative strengths of processes that tend to develop their internal 
soil horizons: Alfisols (10% - in semiarid to moist areas), Andisols (1% - in 
cool areas with moderate to high rainfall, Aridisols (12% too dry for meso-
phytic plants), Entisols (16% - little to no pedogenic development), Geli-
sols (9% - permafrost near the soil surface), Histosols (1% - high organic 
content without permafrost), Inceptisols (17% - moderate development in 
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semi-arid to humid environments), Mollisols (moderate to pronounced 
soil moisture deficit), Oxisols (8% - highly weathered soils in subtropical 
and tropical regions), Spodosols (4% - acid and infertile), Ultisols (8% - 
acid soils in humid regions), and Vertisols (2% - high content of expanding 
clay minerals). The NRCS classification recognizes 64 Suborders, 300 
Great Groups, and more than 2400 Subgroups. 

Thus, a major challenge for this project was how to select a representative 
suite of the most common soils that might be encountered by the military 
during operations in the field. One option was to select soils that represent 
the 12 soil orders of the USDA soil taxonomy. A Soil Order is the category 
with the highest level of generalization and abstraction, and each Soil Or-
der is very heterogeneous with respect to its physical and chemical proper-
ties that are not considered in the differentiation (NRCS 1999). As a 
consequence, knowing only the Order of a soil is not sufficient to allow for 
scientific repeatability of compositional measurements. Soil Series are the 
most homogeneous classes in the system of taxonomy of the NRCS. They 
are the lowest and most homogeneous category of the national soil classifi-
cation system and provide a detailed record of soil properties needed to 
prepare soil evaluations for different applications in agriculture, construc-
tion, roads, etc. An official NRCS Soil Series description includes infor-
mation on location, taxonomic classification, a detailed soil profile 
description, location of the typical soil profile, the range of descriptive 
characteristics, competing series, geographic setting, geographically asso-
ciated soils, drainage and permeability, use and vegetation, distribution 
and extent, and additional data. Therefore, a soil sample from an officially 
recognized Soil Series taken at the “location of the typical soil profile”, rep-
resents a unique soil that is readily accessible, should additional sampling 
be needed in the future for further testing and confirmation. However, it 
was not possible to select a small set of representative soils from the 
25,000+ soil series in the United States to cover the full range of soil char-
acteristics because any stratification scheme will necessarily fall short. 
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3 Methods 

3.1 Background 

JRPA undertook a capabilities performance investigation of the current 
COTS handheld analyzers for XRFS, RS, and LIBS to understand perfor-
mance through a detailed program of comparative detection and quantifi-
cation of chemical elements and molecular species in soils. Two types of 
soils were used for this purpose: (1) Standard Reference Materials (SRMs) 
and (2) natural soils from across North America. A listing of these soils 
and standards is provided in the on-line archive for this project in the 
JRPA Multisensor Project folder on the Open Science Framework tool 
(https://osf.io/z3wgk/). Although SRMs can serve as consistent calibra-
tion points for sensor performance, previous work by Hendrickx and his 
colleagues on the detection of improvised explosive devices (e.g., Das et al. 
2001; Miller et al. 2004; Van Dam et al. 2004; Hendrickx et al. 2006) un-
ambiguously corroborated that more will be learned from sensor develop-
ment research using representative field soils than commercially available 
standard materials. The latter are unrepresentative of the wide range of 
natural soils that are encountered in the field. Thus, test results in these 
media will not necessarily give a realistic evaluation on the potential and 
limitations of a novel sensor for field soil analysis.  

A total of 272 natural soils were acquired from four sources for the project 
analytical work. These are follows: (i) 50 rangeland soil samples from cen-
tral New Mexico, (ii) 21 soil samples from two sites in west-central New 
Hampshire, (iii) a suite of 144 agricultural soils from across the United 
States and Canada provided by Colorado State University, and (iv) 58 soils 
from small arms ranges on military installations in Massachusetts, Vir-
ginia, Georgia, Idaho, Washington, and Alaska provided by USACE-ERDC-
CRREL. Each soil suite is described in the Appendix to this report. To-
gether, these soil suites met the following criteria: 

(i) The soils should be representative of a particular area; 

(ii) The soils chosen should represent different climatic settings across the 
country (from semi-arid to humid, because climate is an important soil 
forming factor); 
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(iii) The soils should represent different geologic parent materials, because 
parent material also is an important soil forming factor; 

(iv) The soils should represent different ages because time is another im-
portant soil forming factor; 

(v) The soil should be relatively thick and have distinguishable A and B ho-
rizons, so that well-defined, homogeneous samples can be collected; and 

(vi) The soils should represent more than half of the twelve soil orders. 

3.2 Soil sample preparation and analysis  

The natural soil samples for the project were sieved with #10 (2 mm 
sieve), milled with a ceramic mortar and pestle for 1 minute, and then ali-
quots were hydraulically pressed with 1 ton of pressure for 2 minutes into 
pellets for analysis. Soil standards, received as homogeneous powders, 
were hydraulically pressed into pellets in the same manner as the natural 
soils. 

XRFS analyses were undertaken using a SciAps X-250 handheld analyzer. 
The X-250 utilizes a rhodium X-ray tube with 4 mm spot size and 20 mm 
silicon drift detector (SSD) with 135eV resolution that has a FWHM of 5.95 
for the manganese K-alpha line. An energy-to-channel calibration per-
formed at the beginning of operation and approximately every 30 minutes 
thereafter. Three separate sequential measurements of 40 seconds time 
were made with three different beam parameters (50 KeV, 60 mA, no fil-
ter; 40 KeV, 60 µA, no filter; and 15 KeV 80 µA, 100 mm Al filter) at each 
of three locations on each soil pellet using the SciAps internal ‘soil mode’ 
calibration based on the analysis of 40 SRMs. This provided quantitative 
data for 17 elements of interest (P, S, K, Ca, Ti, Fe, V, Cr, Mn, Ni, Zn, Rb, 
Sr, Zr, Sn, Sb, Ba), with some other elements of interest (Co, Mo, Cd, Pb, 
U, Th) consistently below the limit of detection in the soil suites analyzed. 

RS analyses were obtained with a SciAps Chem-200 Raman analyzer. This 
instrument utilizes a 785 nanometer (nm) laser that produces 500 milli-
watt (mW) (maximum power). Spectra were collected over a wavenumber 
range of 200-1800 cm-1 through accumulation of 15, 1.2 second accumula-
tions at three locations on each soil pellet after calibration using a benzo-
nitrile standard. Raw, unprocessed (i.e. non-baseline corrected) spectra 
were used for the data analysis. 
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LIBS analyses were performed using a SciAps Z-300 LIBS instrument 
which contains a 1064 nm neodymium-doped yttrium aluminum garnet 
(Nd:YAG) laser that produces a 50-100 micrometer (µm) diameter beam 
on the sample surface. The laser was operated at 5-6 millijoule (mJ), with 
a 1 nanosecond (ns) pulse duration, and a 10 hertz (Hz) firing rate. The 
three spectrometer-charged couple device pairs, covering the spectral 
range of spectral range of 190 to 950 nm (FWHM = 0.20 nm at <365 nm), 
0.25nm from 365 to 620 nm, and 0.40 nm at >620 nm) had a gate width 
of 1 millisecond a gate delay of ~650 ns. These analyses were collected un-
der Ar gas flow using three data collection laser shots after two cleaning 
shots over three 4x2 grids of 50-100 nm diameter at 3 locations on each 
soil pellet to generate 72 spectra, each 22,500 data points per spectrum, 
for each sample after on-board calibration every 10 minutes. The instru-
ments were wavelength calibrated at the beginning of operation and peri-
odically thereafter at approximately 30-minute intervals. A second Z-300 
LIBS analyzer provided by SciAps was used to acquire a comparable data 
set for instrument performance comparison. 

XRFS and LIBS spectra were preprocessed using z-scoring (mean subtrac-
tion and standard deviation division) normalization before further pro-
cessing and fusion. XRFS spectra were truncated to be the same length 
and LIBS spectra had Ar spectral lines removed and baseline corrected. No 
normalization was applied to the XRFS quantitative data and RS spectra 
were utilized as collected. 

Examples of typical XRFS, RS, and LIBS spectra obtained during this pro-
ject are presented in Figures 2-4, in this case for the playa lake soil at the 
White Sands, NM sampling locality. These three figures illustrate clearly 
that each of the handheld analyzers not only records similar compositional 
information, as expected, but also can contribute unique information 
about the composition of a soil sample. 
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Figure 2. Example XRFS spectrum for the playa soil from White Sands, NM, showing 
the presence of Ca, Sr, S and Fe. 

 

Figure 3. Raman spectrum for the playa soil from White San. 

 

Figure 4. LIBS broadband spectrum for the playa soil from White Sands, NM,  
showing presence of Ca and Sr together with the minor presence of Si and Na. 
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4 Signal Processing, Statistical Analysis, 
and Data Fusion 

An investigation was undertaken of (i) different approaches to spectral 
data preprocessing and the fusion of the data outputs from current models 
of SciAps handheld analyzers for XRFS, RS, and LIBS and (ii) the use of ad-
vanced statistical analysis together with pattern recognition and machine 
learning for material classification and discrimination using the spectral 
data produced by these analyzers. 

4.1 Spectral data preprocessing 

LIBS analysis is complicated by the potential for variable interaction of the 
laser energy with the material being analyzed, so that the intensity of the 
light emission from the LIBS plasma can vary from laser shot to laser shot. 
Thus, LIBS spectral data needs to preprocessed so that only high-quality 
spectra are utilized for any data analysis application. Therefore, prior to 
the completion of the soil analysis effort, high quality LIBS datasets previ-
ously collected for other types of natural materials were used to assess the 
most effective method for data preprocessing. Preprocessing was also ap-
plied to the XRFS and RS data, as appropriate. 

4.1.1 Spectral truncation (XRFS) and normalization (XRFS, LIBS, RS) 

Due to the calibration process for XRFS, the spectra are often of slightly 
different lengths. Machine learning algorithms cannot process feature vec-
tors of different length. Therefore, all XRFS spectra were truncated to en-
sure equal lengths. In order to ensure the classifier is not erroneously 
trained to make decisions based on relative intensity of XRFS, RS, and 
LIBS spectra, each intensity spectrum was normalized by subtracting the 
mean and dividing by the standard deviation. 

4.1.2 Argon spectral line removal (LIBS) 

The LIBS data collection process using an inert gas to enhance plasma inten-
sity results in non-trivial emission line magnitudes at wavelengths of the Ar 
purge gas, regardless of the possible presence of Ar within the sample be-
ing interrogated. If these emission lines are constant or random across the 
identified spectral classes, then the partial least squares discriminant anal-
ysis (PLSDA) classifier should apply a zero or near-zero weight to the 
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magnitudes of these lines during the training of the translation function 
that converts the raw data to a classification label. However, there is the 
potential that some bias will occur within these emission line magnitudes 
for any particular data set (especially those with limited samples) such that 
the classifier might interpret the Ar emission lines as informative features 
for classification and weight them more heavily. Therefore, it was consid-
ered prudent to remove these emission lines from the LIBS spectra to en-
sure classifier robustness. 

As recorded, LIBS spectra contained emission lines for all wavelengths be-
tween 180 and 961 nm. With Ar removal, only emission lines in the ranges 
of 190-675, 765-771, and 776-779 nm were retained. This process reduced 
LIBS spectra from 23,431 emission lines to 14,823 emission lines. The im-
pact of argon removal was tested on several non-soil-based classification 
tasks, and no negative impact was observed. 

4.1.3 Baseline correction (LIBS) 

Although baseline drift was not observed to any great extent in the LIBS 
spectra for the soils analyzed during this project, substantial baseline drift 
was observed in some older LIBS data sets acquired with the same SciAps 
handheld analyzer. Thus, there is the potential that such variations in base-
line level could confound the quality assessment of spectra (e.g. the calcu-
lation of signal-to-noise ratios) and negatively impact classification 
performance. Therefore, a baseline correction algorithm was developed 
that employs a 2-stage process that first removes the sparse peaks in the 
LIBS spectrum in order to estimate the baseline response, and then sub-
tracts the estimated baseline from the original LIBS spectrum. In order to 
remove the peaks in the LIBS spectrum, a Hampel filter (Davies and 
Gather 1993) with a window size of 2% of the spectrum length was ap-
plied. For each sample, if the emission line magnitude was more than 
three standard deviations from the filter window’s median, it was replaced 
by the median. Once the peaks were removed from the spectrum, the base-
line of the spectrum was estimated by smoothing the residual with a me-
dian filter that was 0.5% of the spectrum length. This smoothed 
baseline estimate was then subtracted from the original spectrum. The 
baseline correction algorithm was added to the standard LIBS prepro-
cessing workflow. 
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4.1.4 Spectra culling (LIBS) 

Some individual LIBS spectra appear to be anomalous outliers compared 
to the other spectra of a contemporaneously acquired set. Typically, such 
spectra correlate poorly with the other spectra collected from the same 
sample or they have a very low signal-to-noise ratio (SNR). It was hypoth-
esized the removal of these outlier spectra would improve classification 
performance and, therefore, would be beneficial to add to the standard 
LIBS pre-processing procedure. Thus, the potential benefit of outlier spec-
tra culling based on either SNR or low within-sample similarity was evalu-
ated. 

For evaluation, a sample-based decision-making approach was used, ra-
ther than spectra-based classification, since sample-based decision making 
is used by the sensor fusion algorithm and it has the potential to discount 
outlier spectra inherently. For sample-based decision making, all of the 
spectra confidences for a single sample are summarized by taking the av-
erage to give a single classifier label for a sample. By taking the average of 
the classifier confidences before making a final decision, the impact of out-
lier spectra may be potentially reduced (assuming that most spectra are 
not outliers), leading to a higher classification accuracy than might be ob-
served if each individual spectrum is scored. The positive benefit of culling 
of non-standard (outlier) spectra was observed in LIBS dataset acquired for 
other types of geological materials and so was adopted for the soil data ac-
quired during this project. 

4.1.5 Signal-to-Noise Ratio (SNR) 

As noted above, LIBS spectra demonstrate variability in quality that can 
impact classification performance. A robust, meaningful metric for esti-
mating SNR is a tool needed for improving classification performance 
through poor data removal as well as a means of alerting users to the po-
tential of system issues (e.g. if all data are of poor quality) in real time. In 
order to estimate SNR, the true signal without noise must be known. How-
ever, the true signal is rarely known under real-world conditions. Instead, 
an approximation of the true signal strength is estimated and used to cal-
culate SNR. 

Several potential methods of estimating the strength of the true signal in 
the LIBS spectra were compared in terms of computation load and perfor-



ERDC/CRREL CR-20-1  17 

mance. Performance was measured in terms of classification accuracy ver-
sus proportion of spectra culled. Ideally, a measure of SNR would maxim-
ize accuracy while minimizing the number of spectra culled, indicating 
that only the noisiest data were being discarded. 

Two methods SNR estimation with low computation loads were evaluated: 
(i) the log of the peak spectrum value (Log-Max) and (ii) the ratio of the 
peak spectrum value to the median spectrum value (Peak-To-Median). 
Although the log of the peak spectrum value technically only estimates the 
signal strength, LIBS spectra with low signal strength tend to be spectra 
with low SNR. In addition to the two methods with low computation load, 
two methods with higher computation loads were considered. In the first 
method (Histogram-Split), an intensity histogram of the spectrum was 
generated, and between class variance was used to separate spectrum 
magnitudes into ‘noise’ and ‘signal’ values (Otsu 1979). Using these groups 
of magnitudes, the signal energy and noise variance were estimated, and 
SNR was calculated. In the second method (Gaussian-Outlier), a Hampel 
filter as described above for baseline correction was used to remove the 
peaks of the spectrum. In this method, the residual was used to estimate 
noise mean and variance. All spectrum magnitudes that were three stand-
ard deviations from the noise mean were considered part of the signal and 
used to estimate the signal energy. With the estimate of the signal energy 
and noise variance, the SNR was calculated. 

Four methods were compared for several different LIBS data sets. Classifi-
cation accuracy was estimated as increasing proportions of LIBS spectra 
were culled based on thresholding of the four metrics. For each metric, a 
limit was placed on culled spectra such that no sample’s spectra were en-
tirely discarded. The two low-computation-load methods were consist-
ently among the best performers across data sets. The Histogram-Split 
approach tended to be a consistently poor performer and the Gaussian-
Outlier method performed poorly for one of the data sets. Of the four SNR 
estimation metrics compared, the ratio of the normalized maximum spec-
trum value to the median spectrum value (Peak-to-Median method) most 
often achieved the greatest improvement in classification performance 
through spectra culling (removing spectra with lower SNR estimates). 
Also, the Peak-to-Median method most often achieved increases in accu-
racy more rapidly than the other methods. This indicates a better estimate 
of SNR than the other methods since the spectra that most impact classifi-
cation performance are identified earlier (i.e. the worst spectra are given 
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the lowest SNR estimates). The Peak-to-Median method was second only 
to one other method in terms of calculation speed, indicating viability for 
real- time use. 

The potential benefit of spectra culling was tested on two geological data 
sets. Spectra were culled based on thresholding of either the SNR estimate 
or the similarity measure. The remaining spectra were classified, the confi-
dences were averaged per sample, and a final label assigned based on the 
averaged confidences. This process was repeated for a range of thresholds 
ranging from no culling to the maximum number of spectra that could be 
culled without discarding any samples. Little benefit appeared to be gained 
from culling outlier spectra if no samples are discarded in their entirety. Ra-
ther, any potential benefit of evaluating spectra quality will likely be in 
terms of determining whether an entire sample should be remeasured. 
Given these results, this process was not added to the standard prepro-
cessing workflow. However, there is potential for this method to be used 
as a tool to evaluate a data collection in real-time. 

4.1.6 Similarity 

Because LIBS is an analyzer that interrogates a sample at a spatial scale of 
10s of microns, there always is the concern about sample heterogeneity af-
fecting the LIBS analysis. This is a particular concern with the soil sample 
suite for this project, as the pellets analyzed were visually heterogeneous to 
variable extents. In addition to considering SNR as a method to cull outlier 
spectra, a second method of culling was considered based on the similarity 
between a spectrum and the other spectra collected for an individual sam-
ple. 

To examine this effect, a spectral similarity analysis was undertaken. For 
this analysis, the pairwise spectral contrast angle was computed by treat-
ing each LIBS spectrum as a vector and calculating the angle between the 
two spectra (Krause et al. 1993). The spectral contrast angle can range 
from 0 to 1, where 0 indicates a perfect match. Figure 5 shows the esti-
mated pairwise spectral similarities for a subset of 14 NIST and OREAS 
SRM soil standards. Each row represents a measurement site on the soil 
pellet that averages the full number of LIBS spectra collected at each site. 
Each column represents a similarity metric and the color-scale differences 
represent the value of the similarity metric. The yellow diagonal in each 
image is perfect similarity since this is the comparison of the spectrum 
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with itself. Perfect similarity is one for correlation and zero for the similar-
ity index and spectral contrast angle. Some of the 14 soil pellets show 
strong heterogeneity in this spectral variability analysis indicating textural 
heterogeneity within the pellet. 

Figure 5. Spectral variability plot degree of homogeneity/heterogeneity between 
the different locations analyzed on soil pellets for 14 soil standards. 

 

4.1.7 Outlier rejection methodology 

A typical classification problem partitions the feature space such that 
every possible point in feature space is assigned to a class. However, in ac-
tual applications, it is likely that samples will be measured that are not 
members of any of the predefined classes. Rather than assign class mem-
bership to such samples, a better approach would be to alert the user of the 
system that these samples are likely “none of the above” (NOTA). 

Outlier rejection requires a different approach to classifier design. Instead 
of setting a boundary between classes by finding the points that maximize 
the distance between the two classes, a boundary must be set around each 
individual class based on its data alone. Since there is no contrasting data 
to indicate where the boundary of one class ends and the ‘outlier’ class be-
gins, a different approach must be taken. The approach used here is based 
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on Hempstalk et al. (2008) that uses available spectra from each analyzer 
and class to estimate the mean and standard deviation at each wavelength. 
With this statistical model, a number of simulated spectra matching the 
number of measured spectra are generated. The outlier rejection, i.e. 
NOTA classifier, is trained to set a boundary between the measured spec-
tra (not an outlier) and the simulated spectra (outliers). This process will 
set a boundary as tightly as possible to the measured spectra (Figure 6). 
The more accurate the statistical model, the tighter the outlier rejection 
boundary. Thus, this process requires a significant amount of measured 
data to ensure an accurate boundary. 

Figure 6. Difference between typical classification (left) and outlier rejection (right). 

 

 

Figure 7. Implementation of the NOTA analytical process. 
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Rejecting “none of the above” (NOTA) samples is implemented hierarchi-
cally (Figure 7). A sample’s spectra are tested against N binary “is/is not a 
class” classifiers. If all the sample’s spectra are rejected by all the binary 
classifiers, then the sample is rejected as NOTA. If not, then the sample’s 
spectra are passed on to the typically trained N-class classifier for determi-
nation of class. 

Each NOTA classifier is a random forest classifier. Although Hempstalk et 
al. (2008) suggest that this process will work with any classifier type, re-
sults were only demonstrated with a tree-based classifier. Several types of 
classifiers were tested for this effort, and success was achieved only with 
the random forest classifier (a tree-based classifier). 

In order to assess the NOTA classifier performance, two types of errors 
were considered: (i) NOTA samples that are not rejected, and (ii) non-
NOTA samples that are rejected but would have been correctly classified 
if not rejected. Non-NOTA samples that would be incorrectly classified 
should arguably be rejected by the outlier rejection process. These are 
samples that do not fit the statistical models being used by the n-class 
classifier to assign a class label. Therefore, these samples were ignored 
during the NOTA classifier assessment. 

4.1.8 Outlier rejection results 

Two cases were considered. In the first, the non-NOTA data set was the 
New Mexico soil suite, and the NOTA data sets were the CSU soils, NIST 
standards, OREAS standards, and military installation soils. In the second, 
the non-NOTA data set was the military installation soil suite, and the 
NOTA data set consisted of the New Mexico soils, CSU soils, NIST stand-
ards, and the OREAS standards. Figure 8 shows an example of percent re-
jections for the different data sets as a function of the NOTA classifier 
operating points. The goal is to select an operating point that minimizes 
the rejection non-NOTA correctly classified samples while maximizing the 
rejection of NOTA samples. For example, selecting an operating point of 
0.65 in Figure 8 would incorrectly reject approximately 9% of correctly 
classified military installation soil samples while correctly rejecting 60-
97% of the NOTA samples, depending on the NOTA data set. In addition, 
75% of the incorrectly classified non- NOTA samples would be rejected by 
the outlier rejection classifiers. 
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Figure 8. XRFS outlier rejection rates for different data sets when the non-NOTA 
data set is the military installation soil suite. 

In Figure 9, the optimal operating point (assuming the cost of the two 
types of errors is equal) is selected for each test case and sensor and the 
proportion of rejections at that operating point is plotted. For the LIBS 
and XRFS data, between 70% and 100% of NOTA samples are rejected, de-
pending on sensor and test case. Between 2% and 15% of non-NOTA sam-
ples were rejected. These results indicate the potential for outlier rejection 
with these sensors. While the approach was able to reject 60% of NOTA 
samples while rejecting 5% of non-NOTA samples for the New Mexico 
soils test case using the RS data, all non-NOTA samples were rejected be-
fore any NOTA samples for the military installation soils test case. This is 
likely due to the poor classification performance for the RS analyzer with 
the military installation soils. Since it is unable to determine an accurate 
model of the non-NOTA data, it is also unable to determine data that do 
not match those models. For the military installation soil RS data, it was 
not possible to reject any NOTA samples without rejecting all non-NOTA 
samples (hence the selected operating point to minimize error cost was a 
point that rejected no samples). 
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Figure 9. Rejection rates at the optimal operating point for which the costs of the two 
types of errors (failing to reject NOTA samples and rejecting correctly classified non-

NOTA samples) were assumed equal. 

 

4.2 Sensor information fusion 

In order to combine data for the multiple sensors, a hierarchical classifica-
tion approach was used (Figure 10). For every sample, a set of Ns x Ds 
spectra were collected for each sensor where Ns refers to the number of 
spectra for sensor s and Ds refers to the dimensions of a spectrum col-
lected by sensor s. The sensor-specific classifiers were applied to the spec-
tra generating Ns x C classifier confidences that the sample’s spectra 
belong to each of C classes. In order to generate a feature vector for the 
sensor fusion classifier, the classifier confidences for each sensor were av-
eraged to produce a single 1 x C vector. These vectors were then concate-
nated to create a single feature vector for the sample. This feature vector 
was classified by the sensor fusion classifier and a class label assigned to 
the sample based on the class that generated the highest fusion-classifier 
confidence. Partial least squares discriminant analysis (PLSDA) was used 
for both the sensor-specific and fusion classifiers, and classification accu-
racy was estimated using leave-one-sample-out cross-validation. 
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Figure 10. Flow diagram for XRFS-RS-LIBS spectral fusion procedure. 

 

4.3 Real-time signal processing 

One necessary step to progress from individual analyzers to a multi-ana-
lyzer system is real-time signal processing. Toward this end, a conceptual 
approach for real-time signal processing was developed. This approach, 
which as illustrated in Figure 11, consists of three modules - a file fetcher, a 
result monitor, and a sensor data processor. The software is expected to 
consist of three main modules that can be exchanged as needed (e.g. ad-
vancement in data acquisition). In addition, the data processing module 
will likely contain modules that can be exchanged to change operation 
(e.g. classifier, preprocessing). The file fetcher module handles all raw data 
interactions including polling the source directory for new files, ensur-
ing files have been completely uploaded before transfer, transferring 
files to a 'process' directory to avoid interference issues with incoming 
data and previously recorded data, and reading the data out of files and 
into an appropriate format for processing. Once the file fetcher module 
has successfully transferred and converted the data files, the data proces-
sor performs all the analytics, and the result monitor displays the results 
for the user. The GUI allows the user to select their classification task and 
observe the likelihood that their sample is from each class as data are up-
loaded. Once the user has completed analysis of the sample, the user se-
lects an archive button to send the data and a report of the results to a 
time-stamped folder. Processing is then cleared and ready for data from a 
new sample. 
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Figure 11. Architecture diagram demonstrating expected software operation. The 
software consists of three main modules that can be exchanged as needed (e.g. 

advancement in data acquisition). In addition, the data processing module will likely 
contain modules that can be exchanged to change operation (e.g. classifier, 

preprocessing). 

 

The software for real-time data processing developed for the project has 
the following features: 

• The GUI allows the user to select the appropriate classifiers; 
• The GUI allows the user to select the classes to be discriminated; 
• The GUI allows the user to select the sensors to be used for fusion; 
• The GUI monitors the underlying modules to alert the user if a 

problem arises; 
• As data files from the sensors are uploaded, the GUI will display 

confidence that the sample is from each class for each sensor for 
which there are data; 

• The GUI automatically polls the input directory and updates the 
display as new files are added; 

• Once the user is satisfied with the result, they can select to archive 
the data which will move the data to a storage location and include 
a report 

• The archive button clears the display, creates a date-stamped direc-
tory for storage, and moves the sensor files to the new directory 
with a classification report. 
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This capability was field tested during in August 2019, when the data 
streams from the three analyzers were in real time wirelessly transmitted 
during analysis to a laptop computer. 

During the project, three reference cases were added to the software for 
real-time estimation of class confidences for any unknown sample: New 
Mexico soils, military installation soils, and New Hampshire soils. For the 
latter, only LIBS processing is possible due to the limited data collection. 
For the first two, individual data processing was possible for XRFS, RS, 
and LIBS data, as well as data fusion processing data from all three analyz-
ers. At the conclusion of the project, the software polls an input directory 
into which the user places sensor spectra CSV files. The software automati-
cally determines the analyzer type of the new data, processes the data with 
the appropriate spectra classifier, and displays a confidence that the sam-
ple belongs to each of the three classes in the library. Once data from all 
three analyzers has been added, the spectra classifier outputs are fused 
and confidence that the sample belongs to each class is displayed. Once 
the user has completed analysis of the sample, the user selects an archive 
button to send the data and a report of the results to a time-stamped 
folder. Processing is then cleared and ready for data from a new sample. 
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5 Data Analysis and Spectral Fusion 
Results and Discussion 

5.1 Spectra data preprocessing 

All spectra from the three handheld analyzers were individually normal-
ized using z-scoring (mean subtraction and standard deviation division). 
Characterization features and XRFS quantitative features were normalized 
across samples using z-scoring (cross- validation normalization was used 
during classification). In addition, for the three analyzers, the following 
preprocessing was applied - RS: No preprocessing; XRFS: Spectra were 
truncated to be the same length; LIBS: All spectra were baseline corrected 
and had Ar spectral peaks removed. 

5.2 New Mexico Soil Suite 

Soils were sampled from six locations across central-north New Mexico in 
November and December 2018. Six samples were collected from each loca-
tion along a straight transect approximately 22 m apart, taking about 500 
g from the top 0–5 cm of the soil. The six soils sampled for the project (Ta-
ble 2) were (i) the loamy fine sand of the Bluepoint Soil Series at the Rio 
Salado, (ii) the very stony sandy loam of the Laborcita-Pilabo-Lemitar Soil 
Series Complex in Upper Socorro Canyon, (iii) the very stony sandy loam 
of the Laborcita-Pilabo-Lemitar Soil Series complex in Lower Socorro Can-
yon, (iv) the gravelly sandy loam of the Millett-Sedillo Soil Series complex 
at Sedillo Hill, (v) the gypsiferous sand of the Lark-Transformer Soil Se-
ries association at White Sands, and (vi) the strongly saline silty clay loam 
of the playa soil at Willard. At Rio Salado, two sets of samples were gath-
ered: one at depth 0–3 cm and one at 10–13 cm.  

Seven sets of six samples were collected to determine if the multi-analyzer 
approach could distinguish different soils and identify similar soils. The 
two sets at Rio Salado contain the same soil to test whether these samples 
would be identified as similar. All other soils are different one from the 
other and from the Rio Salado soil to test whether these would be identi-
fied as different soils. Three soils differ only by age: Sedillo Hill (740,000 
years), Socorro Canyon Upper (140,000 years), and Socorro Canyon 
Lower (25,000 years). These soils were sampled to test whether soils that 
are different in some respects (i.e. age) but are similar in other aspects (i.e. 
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parent material, climate, flora and fauna, and topography) could be dis-
criminated. These samples were analyzed by JRPA in January, March, Au-
gust, and December 2019 to evaluate the benefits of sensor fusion 
performance through multiple analysis of the same sample suite. 

The 5-class schema for New Mexico soils was used - Rio Salada, Sedillo 
Hill, Socorro Canyon Upper/Lower, White Sands, and Willard. The six soil 
pellets from each locality were measured on four collection dates (Decem-
ber 2018, January 2019, March/April 2019, and August 2019). Spectral fu-
sion was first undertaken for the January 2019 data collection using the 
spectral data from the three analyzers (XRFS, RS, and LIBS), first individ-
ually, then LIBS with XRFS, and finally the spectral data for all three ana-
lyzers. 

The result of this fusion exercise is shown in Figure 12, where the classifi-
cation accuracy for RS is seen to approach 80%, that for LIBS better than 
85%, and that for XRFS almost 90% for the January 2019 data collec-
tion. So, it is not surprising that the accuracy for 2- or 3-analyzer fusion 
was better than 90%. For the March/April 2019 data collection, this di-
minished to just under 75% for RS, but increased to better than 95% for 
both LIBS and XRFS. By comparison, accuracy for dual analyzer fusion 
involving RS was lower than for January 2019, that for LIBS plus XRFS 
was improved, and that for the fusion of spectral data for all three sensors 
was marginally only diminished. Fusion of the results from both dates ex-
hibited full classification accuracy for the 3-analyzer fusion. 
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Figure 12. Classification accuracy for the New Mexico soil suite based on 
consideration of spectra for XRFS, RS, and LIBS; fusion of spectra for RS + XRFS, 
LIBS + XRFS; and for RS + LIBS + XRFS for spectral data collected in Jan 2019, 

Mar/Apr 2019, and for data fusion from both dates. 

 

In addition, two LIBS systems were used in each of these data collections. 
The number of samples per class varied per data collection (Table 3) with 
an incomplete set of samples analyzed in December 2018 and August 
2019, so that cross-validation analysis for these collection dates is not pos-
sible. 

Table 3. Number of samples per class for each collection date. 

 

Data analysis early in the project suggested that training and testing on 
separate collection dates resulted in poor classification performance for 
LIBS data. This observation raised the following questions: 

1. Do the other analyzers experience the same decrease in perfor-
mance across collection dates? 

2. Can the impact of collection date be mitigated by pooling multiple 
collection dates worth of data for training? The hypothesis is that 

 Dec 2018 Jan 2019 Mar 2019 Aug 2019 
(*LIBS SciAps) 

Rio Salada 2 14 6 12 
Sedillo Hill 2 8 6 6* 
Socorro Canyon  11 11 12* 
White Sands  6 6 6 
Willard  6 6 6* 
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pooling multiple collection dates will result in more robust class 
models. 

3. How is sensor fusion impacted by collection date? 
 

Leave-one-sample-out (LOSO) cross-validation was used to assess the col-
lection dates for which multiple samples had been measured for all classes. 
In addition, cross-validation was used to assess data pooled across all col-
lection dates. Classifiers were trained for each collection date for which 
multiple samples per class were available. These classifiers were used to 
classify data from non-matching collection dates regardless of the number 
of samples per class in the test set. Data were pooled across all but one col-
lection date and used to train a classifier that was then used to classify data 
from the remaining collection date, e.g. the Dec 2018, Jan 2019, and 
Mar/Apr 2019. 

Figure 13. Single analyzer classification results for three different methods of 
training.  

 

Single analyzer results are shown in Figure 13. Cross-validation and 
pooled collection dates result in a single estimate of accuracy. For the indi-
vidual collection date train/test classification, the results are plotted as an 
average with the error bars indicating the cases with the highest and low-
est accuracy (i.e. the full range of accuracy observed). For example, for the 
RS analyzer, cross-validation for the Jan 2019, Mar/Apr 2019, and Aug 



ERDC/CRREL CR-20-1  31 

2019 collection dates ranged from 82% to 93% correct. Pooling the data 
across all collection dates and using cross-validation resulted in 95% cor-
rect accuracy. There are no cross-validation results for Dec 2018 since the 
data set is incomplete. Testing the Jan 2019 data against classifiers trained 
with the Mar/Apr2019 or Aug 2019 data sets results in an average accu-
racy of 49% correct, with little  

If, however, the Jan 2019 data are classified using a classifier trained on 
both the Mar/Apr 2019 and Aug 2019 data sets, accuracy increases to the 
cross-validation accuracy of 82% correct. The classification based the 
quantitative XRFS analyses is thoroughly robust to collection date, 
whereas results from all three analyzers are all negatively impacted by 
training and testing across collection dates. Pooling across collection dates 
mitigates this issue to varying degrees. The same methods of classification 
accuracy estimation were used for the multiple sensor analysis as for the 
single-sensor test (cross-validation, train/test across individual dates of 
collection, and train/test with pooled collection dates). Two fusion cases 
were considered: (i) RS + XRFS + LIBS and (ii) XRFS + LIBS. The spectral 
data acquired by the two LIBS analyzers (JRPA and SciAps) were kept sep-
arate such that each collection date resulted in two sets of accuracy results. 

Figure 14 shows results for fusing XRFS and LIBS sensor data. Cross-vali-
dation results are consistently near 100% correct. As with the individual 
sensors, training with pooled data tends to result in higher accuracy than 
training with an individual collection date. Figure 15 shows results for fus-
ing XRFS, RS, and LIBS data. Results are similar to those for the single-
analyzer results for just XRFS or LIBS. Ignoring the Dec 2018 collection 
date, accuracy for the 3-analyzer fusion with pooled collection date train-
ing appears to be marginally more robust across collection dates than for 
the XRFS and LIBS sensor fusion. It is important to note that each collec-
tion date has a small number of samples, so it is possible that the impact of 
pooling is not just due to capturing variability across dates of collection. It 
might also be due to the increase in the overall amount of information.  
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Figure 14. Classification results for XRFS and LIBS fusion for three different methods 
of training. For each data collection, XRFS data is paired with that from either the 

JRPA LIBS analyzer or the SciAps LIBS analyzer. 

 

Figure 15. Classification results for fusing the Raman, XRFS, and LIBS sensors using 
three different methods of training.  For each data collection, Raman and XRF are 

paired with either the JRPA LIBS sensor or the SciAps LIBS sensor. 

 

All the spectral measurements appear susceptible to decreased accuracy 
when training/testing across collection dates, whilst the XRFS quantitative 
data was not susceptible. Pooling data did mitigate the impact of collection 
date to some degree; however, it is important to note that this may be due 
to the increase in the amount of information as much as it is due to better 
capturing variability across collection dates.  Pooling data is the equivalent 
of measuring a single sample in nine locations instead of three for LIBS or 
measuring a sample nine times instead of three times for XRFS. This may 
be important when there are only a small number of samples per class. 
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Thus, measuring a single sample in multiple locations is likely beneficial 
although not as much as the measurement of more samples. 

5.3 Military Installation Soil Suite 

A second suite of 58 soil samples came from six U.S. military installations 
(Ft. Wainwright, AK; Ft Lewis, WA, Idaho National Guard Camp Kimama; 
Ft. Benning, GA; Ft. Eustis, VA; and Massachusetts Military Reserva-
tion/Joint Base Cape Cod). Provided by Dr. J. Clausen of the USACE-
ERDC CRREL, these soils were collected from the top 2.5 cm of soil at small 
arms firing ranges and, therefore, are contaminated to various extents 
with metal elements present in munitions (such as Cu, Zn, Pb, W, and Sb). 
A range of soil compositions, varying from uncontaminated to strongly 
contaminated, were analyzed for each of the six military installations. The 
NRCS Soil Series to which these soils are assigned is not known. These six 
military installation soil suites were processed during the March- April 
2019 period of analytical work. 

Figure 16. Classification accuracy for the military installation soils based on RS, 
XRFS, and LIBS data; fused 2-analyzer data, and fused 3-analyzer data. 

 

A single data for sets for the sets of 10 surface soils at small arms ranges on 
six military installations were acquired in Mar/Apr 2019. A 6-class classifi-
cation schema was used with the following classes:  MMR-Joint Cape Cod 
(MA), Ft. Eustis (VA), Ft. Benning (GA), ING Camp Kimama (ID), Ft. 
Lewis (WA), and Ft. Wainwright (AK). The result of this fusion exercise is 
shown in Figure 16, where the classification accuracy for RS is around 
60%, and that for XRFS and LIBS >90%. Thus, the fusion results for XRFS 
+ LIBS and for all analyzers exhibit a high accuracy that is >95%. 
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5.4 CSU Agriculture Soil Suite 

Through an arrangement with Dr. Robert Miller of the Department of 
Crop and Soil Science at Colorado State University (CSU) a collection of 
166 agricultural soils were provided to the project that were selected from 
the ALP Laboratory Proficiency Program (ALP-LPP) archive, of which 144 
were analyzed during this project. The soils of the ALP-LPP program were 
collected across 32 US states and 7 Canadian provinces. The samples re-
ceived, which had been milled to <0.7 mm and homogenized, were from 
the top 20 cm of the soil profile at the selected sampling locations. The 
U.S. soils, which are from all 12 of the NRCS soil orders, are particularly 
well characterized compositionally through analytical work undertaken by 
the ALP-LPP program, with quantitative chemical information available 
for >35 specific parameters of interest to the agricultural soil science com-
munity. Analysis of the first 96 samples of this suite was undertaken in 
January 2019, with a subsequent 48 samples analyzed in August 2019. 
These 144 soils represent 10 of the 12 NRCS Soil Orders, but three of the 
classes are only represented by a single sample and another only has two 
samples.  

There is no single classification schema for the CSU soil suite, which can be 
classified in multiple different ways. Therefore, it was decided to examine 
other descriptive features ascertainable from the Soil Series descriptions 
for each soil (i.e. soil thermal regime, soil moisture regime, geologi-
cal/mineralogical character, and geological source) in the context of the 
five soil-forming factors (climate, parent material, landscape setting, bi-
ota, and time) to see if any of these influences could be teased out from 
the statistical analysis. For purposes of the statistical analysis, analytical 
data for the CSU sample suite was grouped for processing according to a 5-
class schema – NRCS Soil Order, thermal regime, moisture regime, miner-
alogical character, and geological source (Table 4). The feature sets used 
were spectra from the individual XRFS, RS, and LIBS analyzers, the quan-
titative XRF analyses, the laboratory chemical analyses for the samples, 
and a combination of all features.  Results are shown in Figure 17 and the 
classification matrices for the random forest classifier with text features are 
shown in Figure 18. For the sensor fusion, samples were discarded that 
were not measured using all the handheld analyzers and/or did not have a 
full suite of analytical metadata. This resulted in the loss of a few samples 
from the processed dataset. 
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Table 4. Classification schema for CSU soil suite characterization. 

 

Toward this end, the spectral data from the three analyzers, first individu-
ally, next fused together 2x2, then fused all together, and finally all infor-
mation about the samples (i.e. spectral data, XRFS quantitative analyses, 
and laboratory chemical analyses) fused together. As illustrated in Figure 
17, a moderate level of success was realized when classifying soils based on 
soil thermal regime, soil moisture regime, and geological source. This re-
sult is not surprising given that only one sample was available per soil, 
when what was really needed for robust statistical analysis was 5-10 sepa-
rate samples of each soil. 
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Figure 17. Classification accuracy for the CSU classification schema based on 
consideration of spectra for Raman spectroscopy - RS (1), X-ray fluorescence 

spectroscopy - XRFS (2), laser-induced breakdown spectroscopy - LIBS (3), fused 
spectra for RS + XRFS (4), RS + LIBS (5), and XRFS + LIBS (6), RS + XRFS + LIBS 
spectra (7), fused spectra + XRF quantitative analyses (8), and fused spectra + 

XRF quantitative analyses + laboratory chemical analyses (9). 

 

To further investigate the situation, classification accuracy with each indi-
vidual characterization feature was calculated in order to assess the rela-
tive information content of each feature. The results for two classifiers 
(PLSDA and random forest) are shown in Figure 18. These plots indicate 
some features in each schema may provide no information for the classifi-
cation. The legends include the accuracy expected from always selecting 
the class that has the most samples using the ‘majority rule’ method for 
evaluating the performance of a classifier when the classes are imbalanced. 
Also, many features appear similarly informative on their own. Although 
not necessarily indicative of their behavior in combination with other fea-
tures, it does suggest a potential issue for consistent feature selection. 
When multiple features provide similar information content, the search 
space for the best selection of features can contain many local performance 
maxima that can confound the search for the true global maximum. 
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Figure 18. Independent feature accuracy per CSU soil classification schema. 
Features are sorted on a per schema basis, greatest accuracy to least accuracy. The 
legends indicate classification performance that could be achieved by always selecting 

the class with the most samples. 

 

To further investigate the situation, classification accuracy with each indi-
vidual characterization feature was calculated in order to assess the rela-
tive information content of each feature. The results for two classifiers 
(PLSDA and random forest) are shown in Figure 18. These plots indicate 
some features in each schema may provide no information for the classifi-
cation. The legends include the accuracy expected from always selecting the 
class that has the most samples using the ‘majority rule’ method for evalu-
ating the performance of a classifier when the classes are imbalanced. 
Also, many features appear similarly informative on their own. Although 
not necessarily indicative of their behavior in combination with other fea-
tures, it does suggest a potential issue for consistent feature selection. 
When multiple features provide similar information content, the search 
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space for the best selection of features can contain many local perfor-
mance maxima that can confound the search for the true global maxi-
mum. 

Finally, principal components analysis was conducted on the CSU soil 
suite for Soil Series represented by two or more individual samples. Figure 
19 presents PC scores plots for XRFS, RS, LIBS, and chemical composi-
tion determined through laboratory analysis. It is notable that samples 
from the same Soil Series tend to be closely associated in PC space in Fig-
ure 19. Whereas, class discrimination for samples of the CSU soil suite ac-
cording to NRCS Soil Order, soil temperature or soil moisture regime, or 
soil mineralogical character or geological source was not successful (Fig-
ure 18), the PC scores plots of Figure 19 suggest Soil Series discrimination 
might be possible based on analysis of a larger set of samples from each 
Soil Series.  

Figure 19. Principal component analysis score plots for XRFS (upper left), LIBS 
(lower left), RS (upper right), and chemistry (lower right) for the soil series of CSU 

soil suite represented by multiple samples 

 

5.5 New Hampshire soils 

Six samples were collected from the upper 5 cm of soil at two locations in 
central New Hampshire by JRPA, three samples from the USACE-ERDC 
Cold Regions Research & Engineering Laboratory in Lebanon, NH and 
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three samples from the Bean Hill locality in Belmont, NH. Additionally, 
three soil pits were excavated by SoilHydrology Associates at each of the 
Bean Hill sample sites, with the different soil horizons in each pit sampled 
and described. 

Laboratory analysis was first undertaken for soil pellets prepared for the 
Lebanon/CRREL and Belmont soil sets and then for the soil pits at the 
Belmont location. The fusion feature vectors for the XRFS, RS, LIBS spec-
tral data were reduced to 2-dimensions using PCA. This analysis demon-
strated that the multi-analyzer approach can distinguish between different 
soil types and identify soils that are similar (Figure 20). Laboratory analy-
sis of pellets from the three soil pits at Bean Hill in Belmont (Figure 21) 
documents the clear distinction of the ash and charcoal layers and other 
layers in soil pit and the compositional differences from the upper to lower 
soil layers.  

Figure 20. Principal component analysis scores plot from laboratory 
analysis of the Lebanon/CRREL and Belmont soil sets. 
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Figure 21. Principal components scores plot from 
 laboratory analysis of the Belmont soil pits. 

 

Classification for each individual analyzer and their spectral data fusion is 
shown on the right side of Figure 22. Discrimination between the Leba-
non/CRREL and Belmont/Bean Hill soil sets is 100% correct for the 
XRFS, RS, and LIBS analyzers individually. Therefore, nothing can be 
gained through sensor fusion. By contrast, there is sufficient composi-
tional variability for the different layers of the three Bean Hill soil pits, 
shown on the left side of Figure 22, that pit discrimination classification is 
extremely poor for the RS spectra (< 30% correct) and not strong for ei-
ther LIBS (< 70% correct) or XRFS (<80%) spectra. Similarly, in this sec-
ond instance, data fusion does not provide any classification benefit. 

Because the ultimate objective of this project was to develop a robust capa-
bility that could be used in the field, a short field study was conducted at 
the Belmont, New Hampshire site to test the performance of the handheld 
analyzers under field conditions with real time data transmission to a base 
station. XRFS and LIBS analyses were undertaken for this purpose; a lo-
gistical issue prevented use of RS analyzer. Field measurements in the 
three Bean Hill soil pits (Figure 23) demonstrated that the XRFS and LIBS 
perform with confidence under ambient environmental conditions, which 
included a rain shower during the fieldwork. 



ERDC/CRREL CR-20-1  41 

Figure 22. Classification accuracy for the New Hampshire soil sets  
from Belmont/Bean Hill (left) and Lebanon/CRELL (right) 

 

Figure 23. Principal component analysis scores plot for fused XRFS and LIBS 
spectral data sets for in-situ analysis of the three Belmont/Bean Hill soil pits. 
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6 Summary 

Funded under US Army ERDC-CRREL contract W913E518C0011, an 18-
month multidisciplinary effort was undertaken by JRPlumer & Associates, 
LLC between September 2018 to March 2020. This project had three tech-
nical objectives: (i) to upgrade current handheld technology for chemical 
analysis by X-ray fluorescence spectroscopy (XRFS), Raman spectroscopy 
(RS), and laser-induced breakdown spectroscopy (LIBS); (ii) to design a 
multisensor system based on these technologies for the rapid, in-situ 
chemical analysis of soils and other materials of military interest; and (iii) 
to investigate the classification/discrimination performance benefit that 
might be achieved through advanced signal pre-processing and data fusion 
with XRFS, RS, and LIBS analyses acquired for four suites of natural soils. 
This initiative was supported by sub-contracts to SciAps, Inc., Signal Anal-
ysis Solutions, LLC, SoilHydrology Associates, LLC, and Applied Spectra, 
Inc. Accomplishments of the program in the latter area are described in 
this report. 

A total of 272 soils from four sources were analyzed for the project - 50 
rangeland soil samples from central New Mexico, 21 soil samples from two 
sites in west-central New Hampshire, a suite of 144 agricultural soils from 
across the United States and Canada, and 58 soils from small arms ranges 
on military installations in Massachusetts, Virginia, Georgia, Idaho, Wash-
ington, and Alaska. An investigation of spectral data preprocessing was 
undertaken that examined the benefit that could be realized from Ar emis-
sion line removal from LIBS spectra, spectra baseline correction, spectral 
truncation and normalization, spectral culling through signal-to-noise ra-
tio analysis, similarity analysis, uncertainty mitigation and adaptive quan-
tization, and outlier rejection. A conceptual approach for real-time signal 
processing was developed and demonstrated through a field test. Finally, a 
hierarchical classification process was developed to combine spectral data 
from multiple analyzers and this was applied to the soil data acquired dur-
ing the project. Using data from multiple collection dates it was observed 
that fusion of XRFS-RS-LIBS spectral data provided better classifica-
tion/discrimination performance than for analysis by any individual ana-
lyzer. 
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Appendix: The Soil Suites 

Background 

A total of 272 soils from four sources were analyzed during the project an-
alytical work in 2019. These are follows: (i) 50 rangeland soil samples from 
central New Mexico, (ii) 21 soil samples from two sites in west-central New 
Hampshire, (iii) a suite of 144 agricultural soils from across the United 
States and Canada provided by Colorado State University, and (iv) 58 soils 
from small arms ranges on military installations in Massachusetts, Vir-
ginia, Georgia, Idaho, Washington, and Alaska provided by USACE-
CRREL. The paragraphs that follow describe each soil suite. 

The New Mexico Soil Suite 

Soils forming in arid environments (i.e. in areas receiving <700 mm of 
precipitation annually) develop in a distinctly different way from those in 
wetter environments. Arid soils are characterized by the accumulation of 
eolian dust consisting of fine particles (silt and clay) and soluble salts 
(such as calcium carbonate and calcium sulfate plus sodium chloride in 
some hyperarid areas). Dust fluxes and composition vary greatly spatially, 
with some dust in the southwest United States arriving from as far away as 
China, while deposition tends to be high downwind of large playa lakes. 
The samples collected for this project reflect the input of eolian dust and 
also some of the issues pertaining to the relationships between soil taxo-
nomic units and field mapping units that affect NRCS rangeland soil maps 
at spatial scales of 1:50,000 or greater.  

Within the budgetary limits available for soil collection in New Mexico, it 
was not possible to select a truly representative small set of soils from such 
a large state of heterogeneous geological character. Therefore, instead of 
using a statistical approach for the sampling design, criteria were devel-
oped to test the capability of the multi-analyzer approach to distinguish 
different soil types and to identify similar soil types. These criteria, posed 
as questions, are: (i) Can the multi-analyzer approach detect which soils 
are different from one another?; (ii)  Can the multi-analyzer approach de-
tect which soils are the same?; and (iii) Can the multi-analyzer approach 
discriminate between soils that are somewhat different, but have common 
underlying characteristics? 
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Initially, eight survey samples were collected from four soil series in cen-
tral New Mexico by SoilHydrology Associates in August of 2018 for the de-
velopment of a sampling protocol as well as initial testing and analysis by 
JRPA. The sampling protocol developed consisted of taking a sample of 
about 500 g from the top 0–5 cm of the soil (Fig. 6.1). After air-drying in 
the laboratory at room temperature, the samples were sieved to remove all 
particles and root debris exceeding a size of 2 mm. The sieved samples 
were sent to JRPA for further processing and analysis. 

This protocol was then followed to sample soils from six locations across 
central-north New Mexico in November and December 2018 Six samples 
were collected from each location along a straight transect approximately 
22 m apart. Described in Table A1, six soils sampled for the project were: 
(i) the loamy fine sand of the Bluepoint Soil Series at the Rio Salado, (ii) 
the very stony sandy loam of the Laborcita-Pilabo-Lemitar Soil Series 
Complex in Upper Socorro Canyon, (iii) the very stony sandy loam of the 
Laborcita-Pilabo-Lemitar Soil Series complex in Lower Socorro Canyon, 
(iv) the gravelly sandy loam of the Millett-Sedillo Soil Series complex at 
Sedillo Hill, (v) the gypsiferous sand of the Lark-Transformer Soil Series 
association at White Sands, and (vi) the strongly saline silty clay loam of 
the playa soil at Willard. At Rio Salado, two sets of samples were gathered: 
one at depth 0–3 cm and one at 10–13 cm. Thus, a total of 42 soil surface 
samples formed the primary suite of samples analyzed for the project.  

Figure A1. Geographic locations of the six New Mexico soil sampling sites. 
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Soil series are classified not only based on the characteristics of the surface 
soil layer but on all soil horizons and characteristics down to a depth of 2 
m depth (Soil Survey Staff, 2014) Often, there is no direct relationship be-
tween the properties of the 0–3 cm soil surface layer and its soil series 
name. Nevertheless, in order to provide more understanding of the context 
of the soil samples used in this project a short description with visuals is 
presented below for each of the New Mexico soil locations. 

Table A1. New Mexico soil sample sites. 

Seven sets of six samples were collected to determine if the multi-analyzer 
approach could distinguish different soils and identify similar soils. The 
two sets at Rio Salado contain the same soil to test whether these samples 
would be identified as similar. All other soils are different one from the 
other and from the Rio Salado soil to test whether these would be identi-
fied as different soils. Three soils differ only by age: Sedillo Hill (740,000 
years), Socorro Canyon Upper (140,000 years), and Socorro Canyon 
Lower (25,000 years). These soils were sampled to test whether soils that 
are different in some aspects (i.e. age) but are similar in other aspects (i.e. 
parent material, climate, flora and fauna, and topography) could be dis-
criminated. 

Bluepoint Soil Series  

NRCS description: The Bluepoint Soil Series consists of very deep, some-
what excessively drained soils that formed on dunes and sand sheets in eo-
lian materials derived from mixed rock sources. The typical NRCS profile 
for the Bluepoint Series is:    

Location           Soil Series Name     Depth      Texture 
Sedillo Hill 445—Millett-Sedillo complex 0-10 cm gravelly sandy loam 
Sedillo Hill  445—Millett-Sedillo complex 15-30 cm gravelly loam 

Nogal Canyon 
649—Nickel-Caliza very gravelly sandy 
loams 

0-5 cm 
very gravelly sandy 
loam 

Nogal Canyon 
649—Nickel-Caliza very gravelly sandy 
loams 

0-5 cm 
very gravelly sandy 
loam 

Rio Salado 620—Bluepoint loamy fine sand 0-5 cm loamy fine sand 
Rio Salado 620—Bluepoint loamy fine sand 0-5 cm loamy fine sand 

Socorro Canyon 621—Arizo-Riverwash complex 5-10 cm   
very gravelly coarse 
sand 

Socorro Canyon 621—Arizo-Riverwash complex 0-5 cm gravelly sandy loam 
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C1 – 0 to 5 inches: loamy fine sand,  
C2 – 5 to 28 inches: loamy fine sand,  
C3 – 28 to 53 inches: loamy fine sand, and  
C4 – 53 to 60 inches: loamy sand. 

The soil at the project sampling location at the Rio Salado (Figs. 5.2.4 and 
5.2.5) is indeed formed in a sand sheet on the south bank of the Rio Salado 
River north of Socorro. The soil map unit is located on the top of a large 
fan with different soil series present on the incised slopes. The boundary 
on the NRCS soil map is reasonably located for this soil series. The NRCS 
description indicates that the soil contains gypsum, but no gypsum was 
present in this profile excavated; instead incipient calcium carbonate accu-
mulation was observed. A buried soil was identified within this soil, with 
the top 40 cm of the profile being very recent sand overlying a more 
strongly developed soil also forming within the sand.  

A soil chronosequence describes portions of a soil series that have devel-
oped in a similar parent material, under a similar climate, with similar 
flora and fauna, and on a similar landform but differ in their degree of pro-
file development only because of differences in age. Numerous studies 
have shown systematic changes in most soil properties (physical and 
chemical) with increasing soil age (e.g. White et al., 1996; Merrits et al., 
1991; Egli et al., 2018). The soil series sampled near Socorro, NM form a 
chronosequence. The youngest soil at Lower Socorro Canyon (Arizo Series 
and the Arizo-Riverwash complex) is approximately 25,000 years old, the 
soil at Upper Socorro Canyon (Nolam Series) is about 140,000 years old, 
and the soil at Sedillo Hill (Ladron Series and the Millett-Sedillo complex) 
is approximately 750,000 years old. The NRCS soil map locates a Rock 
Outcrop soil series 786, which is described as bedrock, just north of the 
project sampling site. Yet, there is no bedrock at this location, instead the 
parent material for the soil are fluvial gravels from the Rio Salado that are 
overlain by young sand sheets that have been mobile within historic time. 
Such discrepancies between the general NRCS description of a soil series 
and the actual characteristics of a soil at any particular place are not un-
common. The explanation lies in the basic heterogeneous character of nat-
ural soils. Thus there can be a distinct difference between the 
representative profile for a soil series description selected at one specific 
place and the character of the same soil at any other place, often tens or 
hundreds of kilometers distant. The two different Socorro Canyon soil se-
ries are separated by a well-defined boundary at the Socorro Canyon Fault, 
across which there is a 2 m difference in elevation. The Arizo-Riverwash 
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Complex soil series is present on the Lower Socorro Canyon surface, 
whereas the Upper Socorro Canyon surface is covered by the Nolam soil 
series. 

Arizo-Riverwash Complex at Socorro  
 
NRCS description: The Arizo-Riverwash Complex at Socorro Canyon (Fig-
ures 6.6-6.9) consists of the Arizo Soil Series and similar soils (55%), grav-
elly Riverwash (30%), and minor other soil components (15%). The typical 
NRCS profile is: 

A – 0 to 2 inches: gravelly sandy loam, 
C – 2 to 60 inches: very gravelly coarse sand. 

NRCS description: The Arizo Soil Series consists of very deep, excessively 
drained soils that formed in mixed alluvium. These soils are found on re-
cent alluvial fans, inset fans, fan apron, fan skirts, stream terraces, flood-
plains of intermittent streams and channels. The Arizo series is classified 
as an Entisol, one of the 12 soil orders, meaning that it very weakly weath-
ered, which indicates a relatively young age. The typical soil profile used by 
the NRCS to describe this soil series is located in Nevada. The typical 
NRCS profile for the Arizo Soil Series is: 

A – 0 to 3 inches: very stony loamy sand, 
C – 3 to 60 inches: stratified cobble-rich coarse sand to extremely 
gravelly loamy sand. 

Our description of the Arizo soil on the Lower Socorro Canyon surface has 
quite a different horizonation. The subscripts indicate the secondary char-
acteristics of the master horizon. In the nomenclature used for classifica-
tion, v is vesicular (meaning it has numerous vesicles or holes in the ped), 
w is weak (indicating a subtle change in color), and k is calcium carbonate 
accumulation (indicated by color or reaction to hydrochloric acid). The lo-
cal profile of the Arizo soil where sampled is: 

Av – 0 to 6 cm: Dark brown (7.5YR 3/3) gravelly loamy sand, 
Bw1 – 6 to 22 cm:  Brown (7.5YR 4/4) gravelly loamy sand, 
Bw2 – 22 to 8 cm: Dark yellowish brown (10YR 4/4) gravelly sandy 
loam, 
Bw3 – 22 to 38 cm:  Brown (7.5YR 4/4) gravelly loamy sand, 
Bw4 – 57 to 85 cm: Olive brown (2.5Y 4/4) Gravelly sand, 

Ck – 85 to 94 cm:  Light olive Brown (2.5Y5/6) Gravelly sand. 
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Nolam Soil Series at Socorro Canyon  
 
NRCS description: The Nolam Soil Series (Figs. 6.6 to 6.8) consists of very 
deep, well drained, moderately slow permeable soils that formed in allu-
vial sediments derived from rhyolite and andesite on terraces and pied-
monts. The typical NRCS profile is: 

A - 0 to 2 inches: gravelly sandy loam, 
Bt - 2 to 13 inches: very gravelly sandy clay loam, 
Ck - 13 to 60 inches: very gravelly sandy loam. 

The description of the Nolam Soil Series on the NRCS map is also different 
than what was observed in Socorro Canyon Upper surface at this site, 
where the local soil profile was mapped as follows: 

Av – 0 to 5 cm:  Dark Brown (7.5YR 3/4) Gravelly Sandy Loam, 
AB – 5 to 31 cm: Dark Brown (7.5YR 3/4) Gravelly Sandy Loam, 
Bt – 31 to 58 cm: Yellowish red (5YR 4/6 ) Very Gravelly sandy clay 
loam, 
Btk – 58 to 75 cm: Red  (2.5YR 4/6) Very gravelly sandy clay loam, 
K – 75 to 152 cm:  Reddish yellow (5YR6/8) very gravelly sandy loam, 
Ck – 152 to 180 cm: Light olive brown (2.5YR 5/4 Very Gravelly 
loamy sand. 

The K horizon designation is not used by the NRCS; however, it is widely 
used by soil geomorphologists to indicate a soil horizon in which all the 
properties are determined by the degree of calcium carbonate cementa-
tion. The horizon is indurated with a particularly slow unsaturated hy-
draulic conductivity. 

In addition to the differences between the NRCS typical profiles and the 
local profiles observed in Socorro Canyon, there is one important addi-
tional local observation that pertains to the location of the boundary be-
tween the Arizo and Nolam series shown on the NRCS soil map (Fig. 6.6). 
The orange boundary presented on the map is not correct, as the actual 
boundary is located along the fault line (i.e. the black line on the map). 
This is the nature of a 1:50,000 scale soil map and the issue of boundary 
location on such maps. This problem of misplaced soil boundary locations 
on such large-scale maps is not well understood by the portion of the soil 
science community who lack geomorphological expertise. 
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Ladron Soil Series at Sedillo Hill  
 
NRCS description: The Ladron Soil Series (Figs. 6.10 and 6.11) consists of 
deep, well-drained, moderately permeable soils that formed in alluvium. 
These soils form on knolls and fan terraces. The typical soil profile is: 

A – 0 to 2 inches: very gravelly sandy loam 
Bw – 2 to 31 inches: very gravelly loam 
Bk1 – 31 to 47 inches: very gravelly sandy loam 
Bk2 – 47 to 60 inches: very gravelly loam 

 
Millett-Sedillo Complex at Sedillo Hill  
 
NRCS description: The Millett-Sedillo Complex at Sedillo Hill (Figures 
5.10 and 5.11) consists of the Millett and similar soils (50 %), the Sedillo 
and similar soils (30 %), and the Minor other soil components (20 %). 

NRCS description: The Millett Soil Series consists of very deep, well-
drained soils formed in alluvium weathered from old gravelly alluvium 
known as ‘rim gravels’. This material is composed of quartzite, sandstone 
and some basic igneous rocks. Millett soils are on stream and fan terraces 
on plateaus and footslopes and shoulders on stable landslides. The typical 
soil profile is: 

A - 0 to 3 inches: gravelly sandy loam, 
Bt - 3 to 18 inches: gravelly loam, 
Bk - 18 to 60 inches: very gravelly sandy loam. 

NRCS description: The Sedillo Soil Series consists of very deep, well-
drained, moderately slowly permeable soils that formed in gravelly allu-
vium. Sedillo soils are on bajadas, piedmonts, fan terraces, fan remnants, 
and stream terraces. The typical profile is: 

A - 0 to 3 inches: very gravelly fine sandy loam, 
Bt - 3 to 19 inches: very gravelly sandy clay loam, 
Bk - 19 to 60 inches: very gravelly fine sandy loam. 

The three NRCS typical profiles presented above also differ considerably 
from observations made during the project fieldwork. The local soil profile 
is: 

Ah – 0 to 7 cm:  Brown (7.5YR 4/4) Sandy Loam, 
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AB – 7 to 27 cm: Dark Brown (7.5 YR 3/3) Gravelly Loam, 
Bt1 – 27 to 42 cm: Dark Reddish Brown (5YR 3/4) Gravelly Sandy 
Clay Loam, 
Btk – 42 to 55 cm: Red (2.5YR 4/6) Gravelly Silty Clay Loam, 
K1 – 55 to 69 cm: Reddish Yellow (5YR 6/9) Gravelly Sandy Clay 
Loam, 
K2 – 69 to 112 cm: Light Red (2.5YR 6/6) Gravelly Sandy Clay Loam. 

 
Lark-Transformer Association Soil Series at White Sands  
 
NRCS description: The Lark-Transformer Association Soil Series (Figs 6.12 
and 6.13) consists of very deep, excessively-drained soils that formed in 
sandy gypsiferous eolian deposits. The typical soil profile is:  
Cyy1 - 0 to 2 inches: gypsiferous sand, 
Cyy2 - 2 to 41 inches: gypsiferous sand, 
Cyy3 - 41 to 60 inches: gypsiferous sand. 
No other field observations were made at this site. 
 

The Playa Soil at Willard 

The final soil sampled for the project was the strongly saline silty clay loam 
of the playa soil at Willard, NM (Figs 6.14 and 6.15). The typical soil profile 
here is: 

H1 - 0 to 6 inches: silty clay loam, 
H2 - 6 to 60 inches: clay. 

No other field observations were made at this site. 

The New Hampshire Soil Suite 

Six samples were collected from the upper 5 cm of soil at two locations in 
central New Hampshire by JRPA, three samples from the USACE-ERDC 
Cold Regions Research & Engineering Laboratory in Lebanon, NH and 
three samples from the Bean Hill locality in Belmont, NH. Additionally, 
three soil pits were excavated by SoilHydrology Associates at each of the 
Bean Hill sample sites, with the different soil horizons in each pit sampled 
and described. The three soils described and analyzed at the Bean Hill dur-
ing the week of 6-12 August 2019 have been mapped as belonging to three 
NRCS soil series – Canterbury Fine Sandy Loam (167B), Moosilauke fine 
sandy loam (415 B), and Pillsbury Fine sandy loam (647B). Due to the 
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scale of the NRCS maps the actual soils sampled described at the Bean Hill 
site may not necessarily fall within these NRCS soil series.  

Soil at Bean Hill Site 1  
 
The soil at site BH-1 (Fig. 6.17) is mapped as the Pillsbury FSL (647B). This 
soil is located on a small boulder terrace adjacent to a small stream. Soil 
horizons at the site are as follows: 

• Litter 10-0 cm, 
• Ah horizon @ 0-10 cm, 
• AB horizon @ 10-16 cm, 
• Bw horizon @ 16-24 cm, 
• C horizon @ 24-55 cm.  

 
Soil at Bean Hill Site 2 
 
The soil at site BH-2 is mapped as the Canterbury FSL (167 B). This soil is 
located in the upper backslope position on a heavily forested drumlin. Soil 
horizons at the site are as follows: 

• Litter @ 6-0 cm, 
• Ah horizon @ 0-18 cm 
• AB horizon @ 18-25 cm, 
• Bw horizon @ 25-34 cm, 
• C horizon @ 35-65 cm. 

 
Soil at Bean Hill Site 3 
 
The Soil at site BH-3 (Figure 6.19) is mapped as Moosilauke FSL (415B). 
This soil is located at the base of a small drumlin on a lower footslope posi-
tion. Soil horizons at the site are as follows: 

• Litter @ 5-0 cm, 
• Ah @ 0-10 cm, 
• Bwj1 @ 10-25 cm, 
• Bwj2 @ 25-36 cm, 
• Ash and charcoal layer varying between 0-8 cm thick, 
• 2Bwb @ 7 cm, 
• 2Cb @ 12 cm. 

The first two soils at the BH-1 and BH-2 sites appear similar in terms of 
degree of development and, therefore, probably in age. They are forming 
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in well-sorted fine sand that contains occasional large boulders. Weather-
ing of these soils has produced some variation in soil properties with 
depth, but the soils are overall weakly developed and probably of Late 
Pleistocene age. The third soil at the BH-3 site displays a compound soil 
profile, in that it contains a buried soil. The soil in the upper stratigraphic 
layer is less strongly weathered than at the BH-1 and BH-2 sites. The soil 
beneath the ash layer is probably equivalent in age to the soil at the BH-1 
and BH-2 sites. The soil pit at the BH-3 site contained a compound buried 
soil, the upper soil is weakly developed and it overlies the buried soil 
which has evidence of a previous fire and a buried soil beneath the ash and 
charcoal. Burial appears to be localized, as the depth of the most recent 
stratigraphic layer is unlikely to have come upslope. A large depression lo-
cated adjacent to this soil pit is suggested as the source of the burial soil. 

The CSU Soil Suite 

Through an arrangement with Dr. Robert Miller of the Department of 
Crop and Soil Science at Colorado State University (CSU) a collection of 
166 agricultural soils were provided to the project that were selected from 
the ALP Laboratory Proficiency Program (ALP-LPP) archive, of which 
144 were analyzed during the course of this project. The soils of the ALP-
LPP program were collected across 32 US states and 7 Canadian provinces. 
The samples received, which had been milled to <0.7 mm and homoge-
nized, were from the top 20 cm of the soil profile at the selected US and 
Canadian sampling locations. The US soils, which are from all 12 of the 
NRCS soil orders, are particularly well characterized compositionally 
through analytical work undertaken by the ALP-LPP program. Analysis of 
the first 96 samples of this suite was undertaken in January 2019, with a 
subsequent 48 samples analyzed in August 2019. These 144 soils represent 
10 of the 12 NRCS Soil Orders, but three of the classes are only repre-
sented by a single sample and another only has two samples. For purposes 
of the statistical analysis undertaken by subcontractor Signal Analysis So-
lutions (see Sections 7 and 8 below), analytical data for the CSU sample 
suite was grouped for processing according to five different schema: Soil 
Order, Thermal Regime, Moisture Regime, Mineralogical Character, and 
Geological Source. 

The Military Installation Soil Suite 

An additional 58 soil samples came from six US military installations (Ft. 
Wainwright, AK; Ft Lewis, WA, Idaho National Guard Camp Kinama; Ft. 
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Benning, GA; Ft. Eustis, VA; and Massachusetts Military Reserva-
tion/Joint Base Cape Cod). Provided by Dr. J. Clausen of the USACE-
ERDC Cold Regions Research and Engineering Laboratory (CRREL), these 
soils were collected from the top 2.5 cm of soil at small arms firing ranges 
and, therefore, are contaminated to various extents with metal elements 
present in munitions (such as Cu, Zn, Pb, W, and Sb). A range of soil com-
positions, varying from uncontaminated to strongly contaminated, were 
analyzed for each of the six military installations. The NRCS Soil Series to 
which these soils are assigned is not known. These six military installation 
soil suites were processed during the March-April 2019 period of analyti-
cal work.  

 



ERDC/CRREL CR-20-1  56 

Acronyms 
ASI Applied Spectra, Inc.  
COTS Commercial-off-the-shelf  
CRM Certified reference material 
CRREL Cold Regions Research and Engineering Laboratory 
CSU Colorado State University 
ERDC Engineer Research and Development Center  
eV Electron volt 
FWHM Full width at half maximum 
GUI Graphical user interface 
Hz Hertz 
ICP-MS Inductively coupled plasma mass spectrometry 
JRPA JRPlumer & Associates, LLC  
KeV Kilo electron volt 
LA-ICP-MS  Laser ablation inductively coupled plasma mass spec-

trometry 
LIBS Laser-induced breakdown spectroscopy 
LOSO Leave-one-sample-out  
µ Micron 
µm Micrometer 
mA Milliamp 
mJ millijoule  
mm Millimeter  
ns Nanosecond  
PC Principal component 
PCA Principal component analysis 
QA/QC Quality assurance/Quality control 
NIST National Institute of Science and Technology 
nm Nanometer 
NOTA None of the above 
NRCS Natural Resources Conservation Service  
R&D Research and development  
RDTE Research, Development, Test and Evaluation 
RS Raman spectroscopy 
RSD Relative standard deviation 
SAS Signal Analysis Solutions, LLC 
SciAps SciAps Inc. 
SHA SoilHydrology Associates, LLC 
SMU Soil mapping unit 
SNR signal-to-noise ratio 
USACE U.S. Army Corps of Engineers  
USDA U.S. Department of Agriculture  
XRFS  X-ray fluorescence spectroscopy 
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